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Abstract

Using numerical simulations, properties of the flow and heat transfer in multiple pipe bends composed of 90�-bends are investigated
for various switching angles, and the mixing performance is compared by means of various trajectory-based analyses. Although the
behavior of both the secondary flow and Nusselt number show a periodic feature, they do not completely correspond with each other.
The Lyapunov exponent quantitatively exhibits a distinct difference in the mixing depending on the switching angle, while the Poincaré
map depicts a specific aspect even in a long-term. The residence time distribution is a potential indicator reflecting the flow structure with
time-information.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The motion of particles in a periodic flow may be cha-
otic even if the velocity field itself is of a rather simple
steady laminar flow in case the fluid elements are subjected
to iterative stretching and folding. This chaotic advection
has been a hot topic of interest for many researchers as a
fascinating non-linear phenomena, and has often been
characterized by the Poincaré section. Ottino [1] summa-
rized the analysis and modeling of the chaotic mixing of
two-dimensional periodic flows and three-dimensional
steady flows.

Flow in multiple pipe bends, in which bends are period-
ically connected with a certain switching angle, is one of the
typical examples of the chaotic advection. Curved pipes are
widely used in the industrial field, e.g., as heat exchangers
and chemical reactors, owing to their high-performance
in heat transfer and mixing. However, in regular coiled
pipes, the counter-rotating secondary flow vortices divide
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the cross-sectional flow field into two closed regions, which
prevents homogenous mixing. Meanwhile, in multiple pipe
bends, the Coriolis force acts on the fluid due to the torsion
of the coordinate system when the curvature plane
switches, in addition to the centrifugal force due to the cur-
vature [2]. This enhances mixing and heat transfer without
additional pressure drops compared to usual coiled pipes,
and this enhancement is effectively realized in laminar
flows. Taking advantage of the low-shear stress compared
to the turbulent mixing, potential applications are also
expected in dealing with fragile or heat-sensitive products
such as chemical products, biological products, food, and
human blood, besides conventional application to such as
heat exchangers.

Jones et al. [3] numerically analyzed steady laminar
flows in curved pipes composed of 180�-bends and investi-
gated the effect of switching angle on the mixing.

Acharya et al. [4] numerically simulated the mixing and
heat transfer using a simplified flow field in various multi-
ple pipe bends with the switching angles of 90�. They exper-
imentally examined the heat transfer in a curved pipe
system made of 180�-bends as well, and indicated that
the heat transfer was enhanced by 6%–8% compared to
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Nomenclature

a pipe radius
Dn Dean number
d distance between neighboring fluid particles
dp modified average pointwise dimension
L length of the convolute line
m point number for spatial average
M number of points for spatial average
n step number
N number of steps for temporal average
Nu Nusselt number
Nu peripherally averaged mean Nusselt number
p pressure
Pr Prandtl number = m/a
Q flow rate
r radial coordinate
R radius of curvature of the bend
Re Reynolds number = 2aW/m
t time
T temperature
Tb dimensionless temperature
Tbulk bulk temperature

Tin inlet temperature
tm mean residence time
Tw wall temperature
u radial velocity
v azimuthal velocity
V fluid volume in the multiple pipe bends
w axial velocity
W average axial velocity

Greek symbols
a thermal diffusivity
d radius ratio (=a/R)
h axial angular coordinate
k Lyapunov exponent
�k average Lyapunov exponent
m kinematic viscosity
q density
s time that a particle reaches the next axial cell
u azimuthal coordinate
U switching angle
w stream function
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the coiled pipe for the Reynolds number ranging from 3000
to 10,000. They also compared the mixing and heat transfer
in 180�-bends with different switching angles by numerical
simulations [5]. They explored the mechanism of the
enhancement in heat transfer partly relating with mixing,
and concluded that the mixing effect alone is not sufficient
to explain the mechanism thoroughly.

Mokrani et al. [6] performed experiments of the flow in
multiple pipe bends consisting of 90�-bends with the
switching angle of 90� for the Reynolds numbers between
60 and 200 using carboxymethyl cellulose (CMC) solution
as the sample fluid, and determined that the heat transfer
was enhanced by 14%–28% compared to the coiled pipe.
Castelain et al. [7,8] carried out experiments on the distri-
bution of the residence time by means of tracer particles
in the same pipe as in [6] and analyzed the mixing perfor-
mance. For the Reynolds numbers greater than 2500, they
obtained more than 20% decrease in axial dispersion for
the 33-bend chaotic system compared to a helical one. Fur-
thermore, they extended the experiments to the range of the
Reynolds numbers between 30 and 30,000, and investigated
the relation between the thermal performance and energy
consumption [9].

The present authors have performed simulations on the
mixing and heat transfer in various multiple pipe bends
with 90� switching angle, and showed the temperature
and velocity fields [10]. In this paper, the properties of
the flow and heat transfer in multiple pipe bends composed
of 90�-bends are investigated for various switching angles,
and detailed comparisons of the mixing performance are
carried out by means of non-linear chaotic analyses includ-
ing the Lyapunov exponent, Poincaré map and the resi-
dence time distribution.

2. Simulation method

Fig. 1 shows the models of the multiple pipe bends con-
sidered in this study. All models are composed of 90�-bends
with a constant radius of curvature, and the multiple pipe
bends are obtained by periodically connecting each bend
with a certain switching angle U, e.g., U = 45�, 90�, and
180� correspond to Fig. 1(a)–(c), respectively. A coiled pipe
without periodic change in the switching angle depicted as
Fig. 1(d) is equivalently modeled as U = 0�.

A steady laminar flow of an incompressible fluid is
assumed in the analysis. The coordinate system of (r,u,h)
illustrated in Fig. 2 is applied, where the corresponding
Cartesian coordinates (x,y,z) is expressed as

x ¼ ðRþ r cos uÞ cos h;

y ¼ ðRþ r sin uÞ sin h;

z ¼ r sin u:

8><
>: ð1Þ

All variables are non-dimensionalized based on the
radius of the pipe a, average axial velocity W, and inlet
and wall temperatures Tin and Tw, respectively,

r� ¼ r
a
; u� ¼ u; h� ¼ h; R� ¼ R

a
;

u� ¼ u
W
; v� ¼ v

W
; w� ¼ w

W
; p� ¼ p

qW 2
;

T � ¼ T w � T
T w � T in

:

ð2Þ



Fig. 1. Multiple pipe bends composed of 90�-bends with various switching
angles U.
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Fig. 2. Coordinate system.
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Coefficients of governing equations in Eq. (4)
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In the following expressions, we omit the asterisks of these
dimensionless variables. When the curvature ratio d = a/R
is small and the Reynolds number is moderate, the trans-
verse velocity components u and v are small in comparison
with the axial component w. In such a case, the effect of ax-
ial diffusion is negligibly small and the governing equations
can be parabolized [11], so that the calculation is carried
out using a space marching technique. The equation of
continuity, and the parabolized Navier–Stokes equation
and energy equation are then expressed as:
o

or
ðrhuÞ þ o

ou
ðhmÞ þ o

oh
ðrwÞ ¼ 0; ð3Þ

o

or
ðbrF Þ þ

o

ou
ðbuF Þ þ o

oh
ðbhF Þ
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RF
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or
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or
ðFdÞ

� �
þ o

ou
cu

o

ou
ðFdÞ

� �� �
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ð4Þ

where h = R + rcosu and the other coefficients are sum-
marized in Table 1. The pressure p can be separated into
the sectional mean pressure and transverse component
according to Ghia [12].

pðr;u; hÞ ¼ �pðhÞ þ p0ðr;uÞ: ð5Þ

To close the system of equations, the following equation to
ensure the constant volume of the flow through the cross-
section is considered.

o

oh

Z 2p

0

Z 1

0

rwdrdu ¼ 0: ð6Þ

The isothermal Poiseuille flow is assumed at the inlet of
the bends with Tin = 1, and the non-slip boundary condi-
tion is applied besides the constant wall temperature of
Tw = 0 at the wall.

Eq. (4) is discretized for each control volume on the
staggered grid, and the convective terms and viscosity
terms are approximated by the 3rd-order upwind scheme
and second-order central difference scheme, respectively,
while the SIMPLE algorithm is adopted to calculate the
velocity and pressure. Based on the experience from the
previous work [10], the grid spacing of Dr = 1/40,
Du = 2p/96 and Dh = (p/2)/3600 is employed except for
the transition parts, where Dh varies according to the
switching angle as explained below.

In our previous work [10], we have investigated the
velocity and temperature fields in the multiple pipe bends
with the switching angle U = 90� and in the helical coiled
pipe. For further analysis, the switching angle U is varied
from 0 to 180� with a fixed bend angle of 90� in this study.



(i) 9th bend 30° (ii) 9th bend 60° (iii) 9th bend 90°

Φ  = 45°

Φ  = 90°

Φ  = 135°

Φ  = 180°

a

b

c

d

A. Yamagishi et al. / International Journal of Heat and Mass Transfer 50 (2007) 1238–1247 1241
A short sub-segment, in which the switching angle is
sequentially changed, is inserted at each connecting section
as a transition part in order to avoid the unfavorable
discontinuity in the pressure gradient due to the abrupt
change in the direction of the centrifugal force. The sub-
segment consists of short pipe-elements connected with
each other with a local switching angle of 7.5�, and the
length and number of pipe-elements are configured so that
the total length of the sub-segment is fixed at h = 3.6� in the
axial direction independent of the switching angle U, e.g.,
12 pipe-elements with a length of h = 0.3� are inserted for
U = 90� (=12 � 7.5�).

The simulations are performed for the Dean number
ranging from 50 to 400, where the Dean number Dn is
defined using the Reynolds number and the radius ratio
d = a/R as in Eq. (7).

Dn ¼ Re
ffiffiffi
d
p

; ð7Þ

where d is fixed at 1/20 in this study.
Prandtl number of the fluid is basically set to 15.8

assuming ethyl-alcohol as the sample fluid while air and
water with Pr = 0.7 and 7.0, respectively, are also consid-
ered for the comparison.
Coiled pipe
(developed) 

direction of the 
centrifugal force 

e

Fig. 3. Secondary flow patterns in the 9th bend (Dn = 150). Note that the
pattern for U = 180� (d) is not symmetric because a short transition part is
inserted between the 90�-bends when switching the curvature plane.
3. Analysis on the secondary flow and heat transfer

Fig. 3 shows the secondary flow patterns for various
switching angles at Dn = 150 in the ninth bend, where
the effect of the inlet boundary condition has almost disap-
peared and the flow pattern can be considered to be quasi-
periodic. Here, the stream function is given by Eq. (8).

u ¼ � 1

rh
ow
ou

; v ¼ 1

h
ow
or
: ð8Þ

When the curvature plane switches at the bend connec-
tion, the Dean roll-cells move in the cross-section and the
Coriolis force acts perpendicularly to the direction of the
secondary flow velocity vectors in the transition part caus-
ing an asymmetric secondary flow pattern (Fig. 3(i)). As
advancing further, it approaches to a symmetric one due
to the dominance of the centrifugal force. Then, it becomes
asymmetric again in latter part of the bend due to the iner-
tia in the movement of the secondary flow field (Fig. 3(iii)).
This feature is periodically observed, and stronger second-
ary flow is basically formed as the switching angle becomes
larger except in the case of U = 180�, in which the second-
ary flow pattern is rather distributed especially after the
connection due to the complete flip of the curvature
(Fig. 3(d)).

Fig. 4 shows the contour of the temperature distribution
in the 9th bend for Pr = 15.8 and Dn = 150, where the
dimensionless temperature Tb given by Eqs. (9) and (10)
is applied.

T b ¼
T w � T

T w � T bulk

; ð9Þ
T bulk ¼
1

p

Z 2p

0

Z 1

0

Twrdrdu: ð10Þ

The temperature distribution in the coiled pipe for high-
Prandtl number is similar to the secondary flow pattern,
i.e., hot sections are symmetrically separated into two
parts. In the multiple pipe bends, on the other hand, the
hot section moves corresponding to the alternative change
in the relative size of the twin secondary vortices, and thus,
the temperature distribution shows a rather complicated
feature. For U = 90� and 135�, high-temperature parts
come together and spread extensively in the cross-section
(Fig. 4(c-iii)), and therefore, the thermal boundary layer
at the wall is especially thin compared to the other switch-
ing angles.

Fig. 5 shows the axial profile of the cross-sectional aver-
age of the mean stream function which represents the
strength of the secondary flow, and the peripherally aver-
aged Nusselt number at Pr = 15.8 and Dn = 150 for
various switching angles and for the coiled pipe. The
peripherally averaged Nusselt number here is defined as
in Eq. (11) using the bulk temperature Tbulk and the aver-
age of the temperature gradient at the wall in Eqs. (10) and
(12), respectively.
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Fig. 4. Temperature distributions in the 9th bend (Pr = 15.8, Dn = 150).
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Fig. 5. Variations of stream function �w and mean Nusselt number (Pr = 15.8
corresponds to the region where the secondary flow patterns and temperature
The strength of the secondary flow in the coiled pipe
asymptotically reaches to a constant value while those for
multiple pipe bends converge to a quasi-periodic change
around after the third bend except for U = 180� in which
the secondary flow pattern is multiply-scattered as seen in
Fig. 3(d). The amplitude of the fluctuation is the largest
for U = 90� at this Dean number. Similar to the stream
function, the mean Nusselt number in multiple pipe bends
shows a periodic feature although there exists a distinct
phase lag to the stream functions depending on the switch-
ing angle, and the resulting heat transfer is the highest for
U = 135� in contrast to the intensity of the stream function.
In addition, the mean Nusselt number for multiple pipe
bends is higher than that for the coiled pipe at this high-
Prandtl number. However, this advantage over the coiled
pipe is not observed at a lower Prandtl number of 0.7.

4. Analysis on the mixing performance

As seen in the previous section, the motion of twin vor-
tices in the transverse section seems to enhance the convec-
tive heat transfer through mixing. However, it is difficult to
evaluate and compare the mixing performance in complex
three-dimensional flows in these multiple pipe bends. In
this section, various approaches mostly related to trajec-
tory-based non-linear analyses are examined in order to
estimate the mixing performance.

Assuming a tracer fluid particle located at (rn, un) in the
nth plane in h-direction, the subsequent position in the
(n + 1)th plane (rn+1, un+1) is denoted as:

rnþ1 ¼ rn þ dr

unþ1 ¼ un þ du
ð13Þ

Considering the following relations in Eqs. (14) and
(15), (rn+1,un+1) is determined as in Eq. (16), and the tra-
jectory of a particle is thus calculated iteratively.
, Dn = 150). Enlarged feature at the 9th bend is shown in the right which
distributions are shown in Figs. 3 and 4.
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In this section, all of the tracer trajectory points are ini-
tially located at the end of the 40th bend where the flow is
considered to be fully developed.
0 200 400
0

Axial position, θ (deg.)
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ng

Fig. 7. Evolution of the length of the convolute line as the sum of the
distance between neighboring points in Fig. 6 (Dn = 150).
4.1. Line-stretching

Regarding the chaotic advection, the mixing perfor-
mance can be evaluated as the evolution of the distance
between two nearby tracers that expands through the
stretching, cutting, and stacking of the flow denoted as
‘‘baker’s transformation” in [13]. In order to visualize
and evaluate this baker’s transformation, tracer trajectory
points are initially aligned densely on the line vertical to
the centrifugal force, and the transversal intersection of
the trajectories are examined here. Fig. 6 shows the inter-
section of the trajectories for Dn = 150 at the end of 3rd
and 6th bends, where as many as 20,000 points are adopted
so that the sequence of the points can be seen as a stretched
line even after advancing further to the axial direction. The
points form regular convoluted lines in the coiled pipe
(Fig. 6(e) and (j)) and this structure is similar to the second-
ary flow pattern shown in Fig. 3(e) with twin concentric cir-
cles, whereas the points spread out over the intersection in
other multiple pipe bends in Fig. 6(a)–(d) and (f)–(i), show-
ing the chaotic mixing inside. The line seems to be more
stretched as the switching angle becomes larger until
Φ = 45° Φ = 90° Φ = 1

Φ = 45° Φ = 90° Φ  = 1

a b c

f g h

Fig. 6. Intersections of the trajectories of 20,000 points initially aligned on the l
bend (a)–(e), and the 6th bend (f)–(j); (e) and (j), respectively are for the coile
U = 135� (Fig. 6(a)–(d)), and some parts are not apparently
recognized as line after 6 bends for U = 90� and 135�
despite the huge number of tracer points (Fig. 6(g) and
(h)). Distinctly divided three regions can be observed in
Fig. 6(i) for U = 180� indicating a rather localized mixing
in this case.

The evolution of the line length L calculated as the sum
of the distance between neighboring points is depicted in
Fig. 7 as a quantitative measure. The line length L expo-
nentially increases with a periodic feature as advancing to
the axial direction, and the increase is the largest for
U = 135�. The line-lengths for U = 90� and 180� are com-
parable at this Dean number although the stretching fea-
35° Φ  = 180° Coil 

35° Φ = 180°  Coil

d e

i j

ine perpendicular to the centrifugal force for Dn = 150 at the end of the 3rd
d pipe at the corresponding axial locations.
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ture seems rather different. It is also clear that the line-
stretching does not necessarily correspond to the intensity
of the secondary flow shown as the stream function in
Fig. 5, in which the amplitude increases as the switching
angle U becomes larger until U = 90� and drastically
decrease for U = 180�.

4.2. Lyapunov exponent

The line stretching shown above is a technique to quan-
titatively evaluate the line length by densely allocating the
trajectory points on line, and the length evolves exponen-
tially as advancing in the axial direction. This exponential
increase is handled more in general here. When the distance
between two nearby trajectories at a certain time t evolves
exponentially to the time, i.e., when the distance is
expressed as an exponential function of the time delay s as:

dðt þ sÞ ¼ dðtÞ expðksÞ; ð17Þ

this value k is denoted as Lyapunov exponent and takes a
positive value in a chaotic system. The Lyapunov exponent
in a long-term average for a system with an infinite space is
often given by

k ¼ lim
s!1

1

s
log

dðt þ sÞ
dðtÞ

� �
: ð18Þ

However, this definition is apparently not valid for a finite
system like in multiple pipe bends where the distance
d(t + s) in the transversal intersection may not diverge to
infinite even for s ?1. Therefore, we adopted the local-
ized Lyapunov exponent [14] defined as the temporal aver-
age of short-term Lyapunov exponents kn(n = 1 � N) with
a time delay Dt expressed as in Eq. (19).

kN ¼
1

N

XN

k¼1

kn; kn ¼
1

Dt
log

dn

d0

� �
;

dn ¼
1

M

XM

m¼1

dmjt¼tnþDt; ð19Þ
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Fig. 8. Distributions of the localized Lyapunov exponent calculated until
where dn is the spatial average of the distance dm

(m = 1 �M) from the noticed point to the surrounding
partner trajectories at step n + 1 that are located on a circle
with a radius of d0 at step n, i.e., M partner trajectories are
re-selected around the noticed point so that the distance is
always reset to d0 at each step. In this manner, the calcula-
tion of the Lyapunov exponent in a finite system is enabled
at each point in the intersection. The number of partner
trajectories M and the initial distance d0 for the spatial
average are set to 100 and 1.0 � 10�5, respectively.

Fig. 8 shows the distributions of the localized Lyapunov
exponent for Dn = 150, where the temporal average is cal-
culated until the end of the 1st and the 20th bends. The
complexity of the distribution for the short-term average
illustrated in Fig. 8(a)–(e) is similar to the line structures
in Fig. 6, i.e., the distribution gets more anfractuous as
the switching angle becomes larger until U = 135�, and it
becomes less complicated for the U = 180� whereas it
shows a symmetric feature for the coiled pipe. The distribu-
tions are almost uniform at the end of the 20th bend and no
clear structure can be seen except for the coiled pipe
(Fig. 8(f)–(j)).
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Fig. 9 shows the evolution of the mean Lyapunov expo-
nent averaged over the whole intersection as a quantitative
measure. The mean Lyapunov exponent is again the high-
est for U = 135� and it takes similar value for U = 90� and
180� as well as the line-stretching shown in Fig. 7. The
Lyapunov exponent converges to a certain value as
advancing in the axial direction except for the coiled pipe.

The dependence of mean Lyapunov exponents on the
switching angle for various Dean numbers are summarized
in Fig. 10, where the values at the 20th bend are depicted as
the ratio to those for coiled pipe for comparison. For a
low-Dean number of Dn = 50, the peak position of the
Lyapunov exponent lies around the switching angle
(1) Φ = 15°  (2) Φ = 45°  (3) Φ  = 90°  

(1) Φ = 15°  (2) Φ = 45°  (3) Φ = 90°  

Fig. 11. Poincaré maps for various switching a
U = 120� and the Lyapunov exponent drastically decreases
at U = 180�. Meanwhile, this peak position shifts to a lar-
ger switching angle around U = 135�, and the relative
decrease for U = 180� becomes small for higher Dean
numbers.

4.3. Poincaré map

Poincaré map is often used to visualize the flow struc-
ture by superimposing the intersections of several trajecto-
ries on a single plane, and is considered to be a practical
method in order to evaluate the mixing performance.
Fig. 11 shows the Poincaré maps for various switching
angles U at Dn = 50 and 150. Eighteen points are initially
located on the center line perpendicular to the direction
of centrifugal force, and the intersection of these trajecto-
ries at the end of each bend is superimposed on a same
plane until 500th bend in these maps here. A distinct struc-
ture in the contrast means that the motion of particles is
trapped in the high-density region and restricted there,
and therefore, a less-structured map, in which the particles
may freely move over the pipe cross-section, is preferred
regarding the better mixing. In explaining the chaotic
advection, the well-structured region with high-density
points and the less-structured region with well-scattered
points are often called ‘‘regular region” and ‘‘chaotic
region,” respectively beside the region with sparse points
illustrated as brighter shade denoted as ‘island.’ At a low-
Dean number of Dn = 50, the twin islands seen for
U = 15� (Fig. 11(a1)) gradually becomes smaller as U gets
larger (Fig. 11(a2) and (a3)), and no regular region or
island can be observed for U = 135� (Fig. 11(a4)). Very
characteristic structure with eight isolated regular regions
appears for U = 180�, resulting in a significant drop in
the mixing performance as shown for the Lyapunov expo-
nent in Fig. 10. At a high-Dean number of Dn = 150, on
(4) Φ  = 135°  (5)Φ = 180° (6) Coil

(4) Φ = 135°  (5) Φ = 180°  (6) Coil

ngles U at (a) Dn = 50, and (b) Dn = 150.



Table 2
Fractal dimensions of Poincaré map

U Dn = 50 150

45� 1.72 1.67
90� 1.74 1.71

135� 1.73 1.73
180� 1.72 1.69

Coil 1.00 1.05
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the other hand, the vague islands seen for U = 15�
(Fig. 11(b1)) already disappear for U P 45� (Fig. 11(b1–
b5)), and chaotic region spreads over the whole cross-sec-
tion even for U = 180�. As far as the apparent feature of
the Poincaré map is concerned, all maps for the switching
angles 45� 6 U 6 180� are quite similar despite the remark-
able difference in the Lyapunov exponents in Fig. 9. For
the coiled pipe, meanwhile, two distinct islands can be
observed for both Dean numbers, and many points are
trapped on the periphery and center line to form a regular
region (Fig. 11(a6) and (b6)).

In order to quantitatively examine the complexity of the
Poincaré map, the fractal dimension is calculated as the
pointwise dimension of the point group [15]. The fractal
dimensions for various switching angles at Dean numbers
Dn = 50 and 150 are summarized in Table 2. The fractal
Fig. 12. Spatial distributions (upper) and histograms (lower) of the residence t
Dn = 150.
dimension takes similar value around 1.7 for 45� 6
U 6 180�, and the differences between them are rather
small, whereas it is nearly 1 for the coiled pipe at both
Dean numbers, showing that the motion of the fluid parti-
cle is not chaotic. Despite the apparent difference in the
Poincaré map at Dn = 50, its fractal dimension does not
seem to be a good quantitative measure in this case; how-
ever, the map provides the specific feature even with a
long-term superposition until 500th bend, especially for
multiple pipe bends with low-mixing performance.
4.4. Residence time distribution

All the analyses shown above are based on the intersec-
tion of the trajectories in the pipe, and the information of
the time-difference among the trajectories is ignored. The
residence-time distribution (RTD) is investigated in order
to examine the longitudinal dispersion of fluid particles in
the pipe here. The residence time of a trajectory is simply
obtained as the time taken to arrive at certain outlet posi-
tion, and the RTD is obtained with the trajectories of
31396 points homogeneously allocated at the fully-devel-
oped inlet, i.e., at the end of the 40th bend as in the other
trajectory-based analyses.

Fig. 12 shows the spatial distributions and histograms of
the residence time within 20 bends for various switching
ime within 20 bends for various switching angles U at (a) Dn = 50, and (b)
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angles U at Dn = 50 and 150 as a function of the time nor-
malized by the mean residence-time tm = V/Q, where V and
Q denote the volume of the multiple pipe bends and flow
rate, respectively. Brighter shade in the spatial distribution
denotes longer residence time. At a low-Dean number of
Dn = 50, twin dark regions are isolated in the spatial distri-
bution and that feature appears as the clear two-peak
structure in the histogram for U = 15� (Fig. 12(a1)). The
dark regions are more diffused as U becomes larger
(Fig. 12(a2)–(a4)), and the separated peaks in the histo-
gram come together indicating a homogeneous mixing
until U = 135�. A large dark region then appears for
U = 180� again with two distinct peaks in the histogram.
The spatial distribution for the coiled pipe has a symmetric
structure with a clear contrast although the histogram has
a single peak (Fig. 12(a6)). At a high-Dean number
Dn = 150, the dark regions may easily be scattered even
with a smaller switching angle (Fig. 12(b1)) and is not
appreciably different also for U = 180� (Fig. 12(b5)).
5. Concluding remarks

The properties of the flow and heat transfer in multiple
pipe bends were investigated for various switching angles
with a fixed bend angle of 90� by using numerical simula-
tions, and various comparisons of the mixing performance
were carried out by means of trajectory-based analyses.

Both the secondary flow and mean Nusselt number in
the fully-developed region resulted in a periodic feature
although the intensity of the secondary flow did not neces-
sarily correspond to the mean Nusselt number.

The comparison via the line-stretching and Lyapunov
exponent quantitatively showed a distinct difference in
the mixing performance while the Poincaré map apparently
depicted a specific aspect even for a long-term mixing fea-
ture in spite of the difficulty in the quantitative comparison
using its fractal dimension. The residence time distribution
was also a potential analysis providing the flow structure
with the time-information, and such analyses via various
approaches enable the general evaluation of the mixing
performance.
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